Estrogen treatment enhances neurogenic differentiation of human adipose derived stem cells in vitro
Authors
Abstract:
Objective(s):Estrogen is a sexual hormone that has prominent effects on reproductive and non-reproductive tissues. The aim of this study is to evaluate the effects of estrogen on the proliferation and neural differentiation of human adipose derived stem cells (ADSCs) during neurogenic differentiation. Materials and Methods: Isolated human ADSCs were trans-differentiated in neural induction medium containing neurobasal medium, N2 and B27 with or without 17β-estradiol (E2) treatment. Proliferation rate and neural differentiation of human ADSCs were assessed using MTT assay, immunostaining and real time RT- PCR analysis, respectively. Results: Analysis of data show that estradiol treatment can significantly increase proliferation rate of differentiated cells (P
similar resources
Matrigel Enhances in vitro Bone Differentiation of Human Marrow-derived Mesenchymal Stem Cells
Objective(s) The use of co-culture cells as well as extra cellular matrix are among those strategies that have been employed to direct mesenchymal stem cell (MSC) bone differentiation in culture. In this regard, there is no study considering the effects of Matrigel on mesenchymal stem cell (MSC) in vitro bone differentiation. This was the subject of the present study. Materials and Methods ...
full textDifferentiation of Mesenchymal Stem Cells Derived From Human Adipose Tissue into Cholinergic-like Cells: In Vitro Study
Introduction: Cholinergic-associated diseases currently constitute a significant cause of neurological and neurodegenerative disabilities. As the drugs are not efficient in improving the suffered tissues, stem cell treatment is considered an effective strategy for substituting the lost cells. Methods: In the current study, we set out to investigate the differentiation properties of human adip...
full textReprogramming by cytosolic extract of human embryonic stem cells improves dopaminergic differentiation potential of human adipose tissue-derived stem cells
The extract of pluripotent stem cells induces dedifferentiation of somatic cells with restricted plasticity. In this study, we used the extract of human embryonic stem cells (hESC) to dedifferentiate adipose tissue-derived stem cells (ADSCs) and examined the impact of this reprogramming event on dopaminergic differentiation of the cells. For this purpose, cytoplasmic extract of ESCs was prepare...
full textparoxetine can enhance neurogenesis during neurogenic differentiation of human adipose-derived stem cells
background: some antidepressant drugs can promote neuronal cell proliferation in vitro as well as hippocampal neurogenesis in human and animal models. furthermore, adipose tissue is an available source of adult stem cells with the ability to differentiate in to multiple lineages. therefore, human adipose-derived stem cells (hadscs) may be a suitable source for regenerative medical applications....
full textmatrigel enhances in vitro bone differentiation of human marrow-derived mesenchymal stem cells
objective(s) the use of co-culture cells as well as extra cellular matrix are among those strategies that have been employed to direct mesenchymal stem cell (msc) bone differentiation in culture. in this regard, there is no study considering the effects of matrigel on mesenchymal stem cell (msc) in vitro bone differentiation. this was the subject of the present study. materials and methods huma...
full textMy Resources
Journal title
volume 18 issue 8
pages 799- 804
publication date 2015-08-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023